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In this paper we discuss how seasonal temperature variation and life-stage specific
developmental thresholds that cause quiescence can synchronize the seasonal de-
velopment of exothermic organisms. Using a simple aging model it is shown that
minimal seasonal temperature variation and periods of quiescence during extreme
temperature conditions are sufficient to establish stable, univoltine ovipositional cy-
cles. Quiescence induced by life-stage specific developmental thresholds, in fact,
promotes synchronous oviposition and emergence. The mountain pine beetle, an
important insect living in extreme temperature conditions and showing no evidence
of diapause, invites direct application of this model. Simulations using mountain
pine beetle parameters are used to determine temperature regimes for which stable
ovipositional cycles exist.

c© 2001 Society for Mathematical Biology

1. INTRODUCTION

Synchrony and seasonality are essential to the survival and reproduction of many
poikiliothermic organisms† (Zaslavski, 1988; Logan and Bentz, 1999). Specif-
ically, the mountain pine beetle (Dendroctonus ponderosaeHopkins, MPB), an
important organism in forest ecosystem successional dynamics, must emerge as an
adult in the appropriate season in order to reproduce. Because their prey, conifers
of the genusPinus, have defenses against attack, MPB must attack treesen masse
in order to successfully lay eggs (Raffa and Berryman, 1980; Raffa, 1988). This
requires that the beetles not only emerge as adults at the right time of the year

∗Author to whom correspondence should be addressed.E-mail: powell@math.usu.edu
†‘Poikiliothermic’ and ‘Exothermic’ are terms we use here to describe organisms whose body tem-

perature is essentially that of their external environment, i.e., ‘cold-blooded.’
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(timing), but also that the beetles emerge essentially all at once (synchrony). Both
appropriate timing and synchrony are required for an adaptive seasonality. A MPB
generation usually completes in one year (univoltine‡) although 2 years may be
required at higher elevations (semi-voltine). Observations indicate that, while eggs
may be laid over a 2–3 month period of time, peak adult emergence typically occurs
over a much shorter interval (Amman and Cole, 1983; Raffa, 1988). This suggests
that MPB have some mechanism which helps synchronize their emergence.

Many insects use diapause to achieve seasonality. Diapause is a state in which
development is suspended, which resets the thermal clock for poikiliothermic or-
ganisms (Tauberet al., 1986). This means that the life cycle is synchronized at this
point and all the individuals are essentially the same age when some external stim-
ulus releases the population from diapause. However, MPB show no evidence of
diapause. Phenology of insects with no obvious seasonal timing mechanism, such
as diapause, is under direct temperature control (Danks, 1987). Hence, temperature
is a strong requisite for MPB and other such insects to simultaneously emerge at
the appropriate time (Raffa and Berryman, 1980; Logan and Bentz, 1999; Logan
and Powell, 2001).

Logan and Bentz(1999) developed a model to study direct temperature control as
a mechanism for synchrony and seasonality in MPB. The model uses the median
oviposition date as the first approximation of when a population of beetles will
reach maturity and reproduce. The model is based on nonlinear growth curves
previously parameterized byLogan(1988). Beginning a ‘beetle’ on every day of
the year and running this model over many generations shows that after a few years,
successive generations emerge either on a single day every year, a finite set of days,
or a cycle (sometimes complex) of days (Logan and Bentz, 1999). The results of
the model appear to be robust, suggesting that synchronization may occur for a
range of realistic temperature cycles. This raises the question, in the absence of
diapause what mechanisms promote seasonality?

Each life stage in MPB has a lower lethal threshold and a lower developmental
threshold, either of which might enhance synchronization. The lower lethal thresh-
old is a temperature below which the beetles cannot survive. The lower develop-
mental threshold is a temperature below which beetles cannot develop, but remain
in a quiescent state waiting for warmer temperatures as described byBentzet al.
(1991). The lethal threshold, which varies for each developmental life stage, could
serve to synchronize emergence by culling those individuals born from eggs laid
too late or too early. However, recent evidence indicates that lower lethal thresholds
are typically not reached, especially during midwinter (Bentz and Mullen, 1999),
and are therefore not likely to cause synchronization.

The developmental threshold may also promote synchrony and seasonality in in-
sects without diapause.Newboldet al. (1994) illustrated this in the specific case

‡‘Voltinism’ refers to the number of generations an organism completes per year. Thus, uni-voltine
organisms complete one generations per year, bi-voltine complete two generations per year and
so forth.
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Figure 1. Univoltine aging forN life stages. Thet j ’s on the horizontal axis are the times
at which the beetle changes from one life stage to another. Numbers on the vertical axis
indicate which life stage is completed thus far. Flat portions of the curve indicate periods
during which the beetle is in a quiescent state (temperatures are below threshold) and
not developing.

of mayflies; Bentzet al. suggested quiescence as a synchronizing mechanism for
oviposition of MPB in 1991, influenced by the earlier work of Amman (Amman
and Cole, 1983). Gurneyet al. (1992) demonstrated that development-free dia-
pause in some life stage is sufficient to cause phase-locking with the seasonal tem-
perature cycle in a theoretical two-stage organism, and expanded on their results in
a series of other papers regarding two-stage organisms (Gurneyet al., 1994; Grist
and Gurney, 1995). Powellet al. (2000) showed that even in multi-stage organisms,
actual quiescence is not required for synchronization, only the differential devel-
opmental dependence on temperature. In the current manuscript we will explore
how the presence of multiple thresholds and a variety of possibilities for dormancy
enhance seasonality in multi-stage organisms like MPB.

In a previous paperPowellet al. (2000) describe a linear caricature of Logan’s
model with simple seasonal temperature variations and linear developmental rate
curves. It was shown that seasonal temperature swings alone are sufficient to estab-
lish seasonality in exothermic organisms. A mathematicalcaveatwas that temper-
atures were required to remainabovedevelopmental thresholds, even though MPB
live in environments with very cold temperatures. In this paper we extend the
analysis to the realistic case in which temperatures can drop below developmental
thresholds and insects remain quiescent for a period of time. This is a crucial ex-
tension for both mathematical and biological reasons. Biologically, most temperate
zone insects experience annual temperatures below their developmental thresholds.
Mathematically, when temperatures pass through thresholds, discontinuities in the
developmental map are created. While the dynamics of continuous circle maps
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is well understood, no corresponding body of knowledge exists for discontinuous
maps. Our goal in this paper is to deduce sufficient conditions for the existence of
univoltine oviposition cycles, even in the presence of these discontinuities. In the
specific case of MPB we will compare these predictions with detailed simulations
of seasonality.

In the next section a simplified mathematical development model is presented, fo-
cussing on the development of the median individual in each generation. We show
that univoltine solutions exist and illustrate the synchronizing effect of lifestage
specific developmental thresholds. This leads us to determine sufficient conditions
for the existence of univoltine solutions for an organism withN life stages. Finally
we examine temperature regimes that create voltinism using both linear and non-
linear developmental rate curves and predict regions of synchrony and seasonality
for the mountain pine beetle.

2. MATHEMATICAL M ODEL

The general developmental model for the ‘age’, or fraction of thej th life stage
completed,a j (t), of the median individual can be written as

daj

dt
= Rj (T(t)), a j (t j−1) = 0.

The functionRj (T) is the rate of aging, wheret is time andT(t) is the temperature
at timet . The developmental age varies between 0 and 1, witht j being the time of
completion of the( j )th life stage anda j (t j ) = 1 (see Fig.1). Formally, one may
write the solution fortN , the date of adult emergence and oviposition, implicitly:

1=
∫ t1

t0

R1(T(t)) dt,

1=
∫ t2

t1

R2(T(t)) dt,

...

1=
∫ t j

t j−1

Rj (T(t)) dt,

...

1=
∫ tN

tN−1

RN(T(t)) dt. (1)

Analytically, finding a closed-form solution fortN is not simple (or even possible)
in general circumstances, but from a computational perspective one simply inte-
grates to 1 repeatedly, saving the final result. For any given temperature regime,
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tN will depend ont0—the time of the year during which the egg was laid; conse-
quently we may think oftN as a map fromt0 to the interval[0,1). Since every
ovipositional date,t0, generates at most one emergence date and time,tN , we may
write tN as a function

tN = G(t0).

Temperatures are not constant in temperate regions. Takingt to be measured in
years, witht = 0 at the average yearly minimum temperature (say January 30), a
simple mathematical model for seasonal variation of temperature (Taylor, 1981) is

T(t) = T0− T1 cos(2π t). (2)

In this equationT0 is the yearly average temperature andT1 is the size of the sea-
sonal contribution to yearly temperature swings; that is, 2T1 is the temperature
difference between the coldest and hottest parts of the year. The behavior of yearly
temperature ismuchmore complicated than this, but as has been shown byPowell
et al. (2000), this minimal seasonality is enough to establish voltinism. Conversely,
the additional terms needed to improve the accuracy ofT(t) are not, within rea-
sonable limits, sufficient to destroy voltinism.

Ovipositional dates cycle from 0 to 1 and then repeat, so solutions fortN are in-
terpreted modulo 1. This creates the possibility for fixed points and strong season-
ality; if tN = 1+ t0 thent0 is an equilibrium solution for oviposition corresponding
to a univoltine cycle. Similarly, if

tN = m+ t0

thent0 is an equilibrium solution for an1m-voltine cycle.
SupposeRj (T) is the simplest possible linear temperature-dependent rate of de-

velopment which includes thresholds,

Rj (T) = max[0, r j (T(t)− θ j )]. (3)

For temperatures as in (2),

r j (T(t)− θ j ) = r j [T0− θ j − T1 cos(2π t)]. (4)

In (4), the parametersr j andθ j are stage-specific constants;r j is the linear rate of
development for temperatures above threshold andθ j is the developmental thresh-
old temperature for life stagej . In regions where MPB live the temperature is
quite cold during much of the year, often below some developmental threshold
(see Fig.2). Analytically, it is cumbersome to carry the max[0, r j (T − θ j )], so
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Figure 2. The temperature curve,T(t) = T0 − T1 cos(2π t), used in the model.T0 is
the mean annual temperature,T1 is the size of the seasonal fluctuations, andθ j is the
developmental threshold for life stagej . For times betweenξ1 j andξ2 j the temperature is
below the developmental threshold, that is,(T0− T1) < θ j .

instead we elect to subtract out periods of time during whichRj < 0 in (1), that is,
we express aging for life stagej as

1=
∫ ξ1 j

t j−1

Rj (T(t))dt +
∫ t j

ξ2 j

Rj (T(t))dt =
∫ t j

t j−1

Rj (T(t))dt −
∫ ξ2 j

ξ1 j

Rj (T(t))dt.

(5)
The beginning of a quiescent period in life stagej is ξ1 j and the end of the same
quiescent period isξ2 j . Equation (5) can be rewritten as

1= f j (t j−1, t j )−

∫ ξ2 j

ξ1 j

Rj (T(t))dt, (6)

with

f j (t j−1, t j )
def
=

[
(T0− θ j )(t j − t j−1)−

T1

2π
(sin(2π t j )− sin(2π t j−1))

]
(7)

and
∫ ξ2 j
ξ1 j

Rj (T(t))dt expanded as

r j

[
(T0− θ j )(ξ2 j − ξ1 j )−

T1

2π
(sin(2πξ2 j )− sin(2πξ1 j ))

]
.

In the event that there is no quiescence, we setξ1 j = ξ2 j . Suppose temperature is
below the developmental threshold for life stagej (as in Fig.2). To find the points
at which the temperature equals the threshold, set

θ j = T0− T1 cos(2πα j ).
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Figure 3. This figure shows two ways in which quiescence impacts developments.
(a) (stop) shows the case where both endpoints of quiescence,ξ1 j andξ2 j , are functions of
α j ; (b) (speed bump) shows the case where the first endpoint,ξ1 j , is the beginning of the
life stage and the second endpoint,ξ2 j , is a function ofα j .

Solving forα j gives

α j =
1

2π
cos−1

[
T0− θ j

T1

]
. (8)

Due to the periodic temperature curve, critical points occur at±α j , 1 ± α j ,
2± α j , . . . , depending on what time of year development begins.

To see why we distinguish betweenα j and ξ j consider Fig.3. For a beetle
developing in life stagej , if the temperature goes belowθ j , then the beetle stops
developing until the temperature rises aboveθ j again. In this case zero aging begins
and ends at two successiveα j s, e.g.,−α j andα j or 1− α j and 1+ α j or 2− α j

and 2+ α j [see Fig.3(a)], a situation we refer to as a ‘stop’. If the thresholds are
increasing between life stagesj−1 and j , then the beetles could finish development
of life stage j − 1 and move into life stagej . However, if the temperature att j−1

is belowθ j , then the beetles enter a quiescent state at the beginning of life stage
j and remain so until the temperature rises aboveθ j , at which time development
for that life stage begins, a situation we refer to as a ‘speed bump’. In this case the
zero aging period is begun att j−1 and ended at one of theα j s. [see Fig.3(b)]. In
either case, we call the beginning and endξ1 j andξ2 j , respectively.

We have definedtN = G(t0). We also know that an1m-voltine life cycle exists if
tN = m+ t0. Hence ifG(t0) = m+ t0, then we must have an1m-voltine solution
for t0. Here we are interested in univoltine life cycles (m = 1), and therefore
look for t0 such that the curvestN = G(t0) and tN = 1+ t0 cross (see Fig.4).
If the temperature never falls below the developmental threshold then a univoltine
solution can be shown to exist; the argument used byPowell et al. (2000) uses
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Figure 4. Crossing ofG(y0) and tN = 1 + t0. The dotted curve isG(t0) without any
quiescence and the solid curve isG(t0) with quiescence. When quiescence is added, then
G(t0) andtN are more likely to cross, but discontinuities are induced.

continuity and the conditions

G(0) > 1 and G′(t0) < 1

to establish sufficient conditions for existence. However, when temperatures pass
below threshold,G(t0) need not be continuous. While quiescence caused by life-
stage specific developmental temperature thresholds may make solutions possible
(as in Fig.4), a continuity-based argument cannot be used to show this.

If G(0) is only slightly larger than 1, quiescence increases the likelihood of a
crossing because of the regions with zero slope (see Fig.4). Such flat regions re-
sult from t0 beginning when temperature is belowθ1 (speed bump); when the egg
is laid, the egg immediately enters quiescence and no development occurs until
the temperature rises aboveθ1. Two eggs laid at different times but both while
T(t) < θ1 will be the same age when they leave dormancy and will therefore have
the same emergence date,tN . Discontinuities inG(t0) occur when quiescence
causes two insects that are similar in initial age to diverge, having very different
emergence dates, and may make crossings impossible. To see how discontinuous
jumps occur, consider two beetles developing in life stagej only one day apart in
age. The first beetle ends life stagej and molts into life stagej + 1. Then temper-
ature falls below the developmental threshold for life stagej , causing the second
beetle to become quiescent. The first beetle continues to develop, causing the two
beetles to have very different emergence dates,tN . The situations is analogous to
traffic flow near a stop light. Initially close cars can be separated by a red signal
occurring just between them; similarly, initially distant cars are brought together
during a stop signal. Thesamesignal causes both phenomena. Overall, then, there
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Figure 5. This figure shows the crossing ofτN = 1+ τ0 andtN = G(τ0). The function
G(τ0) > 1 and the upper bound onG(τ0) crossesτN = 1+ τ0 at τ0 = 2α1 forcing a
crossing in the region ofG(τ0) with zero slope.

are two competing effects: regions ofG(t0)with zero slope which serve to increase
the likelihood oftN = G(t0) andtN = 1+ t0 crossing, and discontinuities inG(t0)
which reduce the likelihood of crossing. For temperatures which make the quies-
cent stage long enough, solutions(t0, tN) for tN = 1+ t0 = G(t0) can be shown to
exist, as we will see in the next section.

3. N L IFE STAGES

A univoltine solution exists if the curvestN = G(t0) andtN = 1+ t0 cross. To
demonstrate this, we will show thattN has an upper bound fort0 < α1 and that
tN = G(t0) is between 1 and the upper bound whent0 < α1, forcing a crossing
(see Fig.5). It is possible that crossings exist for other values oft0 (in fact, our
numerical results indicate that this is, indeed, the case), but we will show that there
exists at least onet0 that generates a univoltine life cycle for a neighborhood of
temperatures. By restricting attention to the interval prior tot = α1 (the beginning
of development) we avoid the discontinuities discussed previously.

Traditionally generation length is measured from the egg to the egg in the next
generation. We could just as easily define the generation time from the completion
of any life stage to the completion of that life stage in the next generation, e.g.,
first larval instar to first larval instar, or pupae to pupae. Here we choose to define
generation time by the life stage with thehighestdevelopmental threshold. If the
temperature is at its minimum during the life stage with the maximum developmen-
tal threshold, then individuals in the other life stages will not experience dormancy
in a univoltine life cycle, simplifying the problem. In addition, the life stage with
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Figure 6. This figure shows how time is shifted so that zero occurs when dormancy begins
for the life stage with the highest developmental threshold.

the highest developmental threshold has the longest period of quiescence, maxi-
mizing the duration ofG(t0) with zero slope. For example, with MPB the pupal
stage has the highest developmental threshold, so we reorganize the life stages such
that

φ1 = θ6, φ2 = θ7, φ3 = θ1, . . . , φ7 = θ5

and

ρ1 = r6, ρ2 = r7, ρ3 = r1, . . . , ρ7 = r5.

Now φi are the newly ordered developmental thresholds andρi are the reordered
linear developmental rates, withi beginning with the highest developmental thresh-
old and continuing through the otherN − 1 life stages in sequential order. In ad-
dition, we reset the clock so that time begins at the point where temperature passes
below the first (and highest) developmental threshold. In Fig.6, the plot on the left
shows time and temperature prior to reorganization. The figure on the right shows
a new timescale withτ = t + α1 andT(t) = T0− T1 cos(2π(τ − α1)) with τ = 0
at the formert = −α1. Henceτ0 is the time the insect begins the stage with the
highest developmental threshold andτN is the time the insect finishes the life stage
just prior to the one with the highest developmental threshold and begins a new
generation. In MPB,τ0 is the inception of the pupal life stage andτ7 is the time of
completion of the fourth larval instar.

The aging equations (1) become

1=
∫ τ j

τ j−1

max[0, ρ j (T(τ )− φ j )] dτ.

Supposeτ0 ∈ [0,2α1]. No development occurs untilτ > 2α1, and consequently
aging in the initial stage satisfies

1

ρ1
=

∫ τ1

2α1

[T0− T1 cos(2π(τ − α1))− φ1] dτ
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= (T0− φ1)(τ1− 2α1)−
T1

2π
(sin(2π(τ1− α1))− sin(2πα1)). (9)

Defineα2 to be the time at which temperatures cross the second highest threshold,
that is,α2 =

1
2π cos−1

(T0−φsubmax
T1

)
andφsubmax= max2≤ j≤N{φ j }. If

tN = τN − α1 ≤ 1− α2, (τN ≤ 1+ α1− α2),

then no other development thresholds are crossed during a univoltine life cycle
(thus avoiding discontinuities). The remaining equations for development can then
be written

1

ρ j
= (T0− φ j )(τ j − τ j−1)−

T1

2π
(sin(2π(τ1− α1))− sin(2π(τ j−1− α1))). (10)

Summing (9) and (10), we get

N∑
j=1

1

ρ j
= T0(τN − 2α1)− τNφN + 2α1φ1+ A

+
T1

2π
(sin(2πα1)− sin(2π(τN − α1))),

where

A
def
=

N∑
j−1

τ j (φ j+1− φ j ).

We are interested inτN ∈ [1,1+ α1 − α2), that is, times of completion satisfying
G(τ0) > 1 but avoiding discontinuities, so we write

τN = 1+ α1− δ, δ ∈ (0, α2).

Now we estimate

sin(2π(τN − α1)) = sin(2π(1− δ)) ≥ sin(2π)− 2πδ cos(2π) = −2πδ

using Taylor’s theorem. It follows that

−
T1

2π
sin(2π(τN − α1)) ≤

T1

2π
2πδ = T1δ = T1(1+ α1− τN).

Therefore,

N∑
1

1

ρ j
≤ (T0− φN)τN − 2α1T0+ A+

T1

2π
sin(2πα1)+ T1(1+ α1− τN)

= τN(T0− φN − T1)+ A+ T1(1+ α1)− 2α1T0+
T1

2π
sin(2πα1).

(11)
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Table 1. Parameters for linearized rates of development for mountain pine beetle, including
developmental thresholds,θ j . Temperatures are measured in degrees centigrade, while
developmental rates,r j , have units of inverse degrees per year (Powellet al., 2000).

Developmental stage Developmental threshold Linear rate

Egg θ1 = 7.5394 r1 = 4.1975
First larval instar θ2 = 8.6358 r2 = 10.6945
Second larval instar θ3 = 9.6322 r3 = 10.4390
Third larval instar θ4 = 8.0342 r4 = 3.4675
Fourth larval instar θ5 = 10.9543 r5 = 3.6500
Pupae θ6 = 11.7555 r6 = 6.2780
Ovipositional adult θ7 = 1.7929 r7 = 1.2775

In general,T0− φN − T1 < 0, so if we solve (11) for τN we get an upper bound

τN ≤

A+ T1(1+ α1)− 2α1T0+
T1
2π sin(2πα1)−

∑N
j=1

1
ρ j

T1+ φN − T0
. (12)

Finally, we must find an overestimate forA. If φ j − φ j−1 < 0 we define
D j

def
= φ j − φ j−1, and if φ j − φ j−1 > 0 we defineU j

def
= φ j − φ j−1. Because

we do not know how many(φ j − φ j−1)’s will be positive and how many will be
negative, we have to bound both

∑
j τ j D j and

∑
j τ j U j independently.

Let φ= 1
N

∑N
j=1 φ j be the average threshold. TheD j are negative, and the

maximum threshold,φ1, is subtracted inD1, therefore
∑

j D j ≤ (φ −φ1). Also,
sinceφ1 is subtracted,

∑
j U j ≤ (φsubmax−φmin), whenφmin is the lowest threshold.

(For MPB,φmax = φ1, φsubmax= φN andφmin = φ2, see Table1). Sinceτ1 > 2α1

andτ j < τN , for j < N

A < 2α1(φ −φ1)+ τN(φN − φmin). (13)

Using (8) and trigonometric properties, we replaceT1
2π sin(2πα1) with

1
2π

√
T2

1 − (φ1− T0)2 and substitute (13) for A in (12). Solving forτN , we get

τN ≤

T1(1+ α1)− 2α1(T0+ φ1− φ)+
1

2π

√
T2

1 − (φ1− T0)2−
∑N

j=1
1
ρ j

T1+ φN − T0− φsubmax+ φmin
. (14)

In the particular case of MPB developmental thresholds the denominator becomes
T1− T0+ φ2.

It remains to show that this bound can be used to guarantee crossings. As
T1 −→ (φ1− T0), α1 −→ 0, and

τN −→
φ1−

∑N
j=1 ρ j − T0

φ1− 2T0+ φ2
=

1

2
as T0 −→∞.
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Thus, the bound onτN can be made less than 1 for sufficiently largeT0. As
T1 −→∞, on the other hand,α1 −→

1
4 and the bound tends to 1+ α1 +

1
2π =

5
4 +

1
2π . In this case, 1+ α1− α2 −→ 1+ 1

4 −
1
4 = 1. Since the bound is less than

1+α1−α2 for T1 −→ (φ1−T0) and greater than 1 forT1 −→∞, there must exist
a range ofT1 that satisfyτN ∈ (1,1+ α1− α2) ⊂ (1,1+ 2α1), which implies that
a univoltine solution exists for some range of temperatures. The predicted temper-
ature region from equation (14) that supports univoltinism is depicted in relation to
simulation data for MPB in Fig.7.

These univoltine solutions will be extremely stable, dynamically, since they are
constructed so thatG′(t0) = 0 for t0 ∈ (−α1, α1). In fact, the univoltine points
are so stable that nearby points converge to them super-exponentially (i.e., in a
finite number of iterations) in subsequent generations. A more difficult question
is the structural stability of the univoltine orbits. An orbit is structurally stable
when it is observable in an open set of parameters, including parameters specifying
the current model among structurally ‘nearby’ models in which it is nested. This
must be demonstrated because the simple, linear development hypothesis (3) is
very restrictive, but central to our existence proof. Without structural stability we
can not expect these results to persist for real, nonlinear insect development. One
approach to demonstrating structural stability is to show that the orbit results from
transverse intersection of differentiable manifolds.

The univoltine cycles described above are points of intersection of the surfaces (6)

1= f j (t j−1, t j ), j = 2,3, . . . , N − 1,

the surface

1= f1(α1, t1),

and the surface

1= fN(tN−1,1+ t0). (15)

The f j are integrals of developmental rates, as in (7), and in equation (15) we have
usedtN = 1+ t0 for the univoltine cycle. Lett∗ = (t∗0 , t

∗

1 , . . . , t
∗

N−1)
T denote the

vector of start times for life stages in the univoltine cycle. From the definition of
f j ,

∂

∂x
f j (x, y) = −

∂

∂x
f j (y, x),

and
∂

∂t j
f j (t
∗

j−1, t
∗

j ) = 0 only if T0− θ j = T1 cos(2π t∗j ).

This latter condition only happens if temperatures pass below threshold precisely
as the individual molts to successive life stages. This, in turn, is impossible since
no development occurs at or below threshold. Thus, if we define

∇ = (∂t0, ∂t1, . . . , ∂tN−1)
T
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Figure 7. Nonlinear rate curves for MPB (solid) and linear approximations (dashed) with
developmental thresholds and linear rates of development. From left to right, top to bot-
tom the curves represent rates of development for (a) eggs; (b) first larval instar; (c) second
larval instar; (d) third larval instar; (e) fourth larval instar; (f) pupae; and (g) ovipositional
adults. Open circles represent developmental data, while ‘×’ represent observed data se-
lected to parametrize a purely linear representation of the developmental rate.
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Figure 8. Combinations of mean annual temperatures in degrees centigrade,T0, and sea-
sonal fluctuations in degrees centigrade,T1, for which equation (14) predicts univoltine
life cycles for mountain pine beetle. Predicted univoltine region using (14) is depicted as
a cross-hatched region. The true univoltine solutions for the nonlinear phenology model
inhabit the darkly shaded area, in which the prediction is imbedded. Above and below
the firmly univoltine region are regions in which solutions of fractional voltinism (lightly
shaded) are possible, as shown in more detail in other simulation figures.

and denote non-zero entries by ‘♠’, we get

∇ f j (t∗)= (0,0, . . . ,0︸ ︷︷ ︸
j−2

,♠,♠,0,0, . . . ,0︸ ︷︷ ︸
N− j

)T , j = 2,3, . . . , N − 1,

∇ f1(t∗)= (0,♠,0,0, . . . ,0)T and

∇ fN(t∗)= (♠,0,0, . . . ,0,♠)T

when evaluated at(t∗0 , t
∗

1 , . . . , t
∗

N−1). Notice that the position of the non-zero en-
tries differs for the gradient of each function, and therefore∇ f j (t∗) cannot be
parallel to∇ fk(t∗) for any j 6= k at t∗; the surfaces intersect transversely. Con-
sequently, the univoltine cycles are structurally stable. In the next section we will
test structural stability by searching for univoltine cycles in linear and nonlinear
developmental models for MPB.

4. APPLICATION TO MPB

Mountain pine beetles show no evidence of diapause, yet maintain synchrony
and appropriate seasonality. Figure8 shows the actual developmental rate curves
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for MPB estimated previously (Logan and Amman, 1986; Bentzet al., 1991; Logan
and Bentz, 1999) along with linear approximations of these curves
(Powell et al., 2000). Determining true development thresholds for this insect in
laboratory experiments has proven difficult. Larvae feed and develop within the
cryptic habitat of tree phloem. It is extremely difficult to maintain an appropri-
ate environment for the length of time required to monitor development at low
temperatures. Due to these problems, current best estimates of low-temperature
developmental thresholds for this insect are those derived by linearly projecting
the lowest developmental rates. The parameter values for the linear model appear
in Table1.

By iterating the ovipositional map for many generations we are able to deter-
mine which seasonal cycles, if any, are attracting. Structural stability of our pre-
dictions will be tested both by investigating the nonlinear development model as
well as adding complications (realism) to the temperature profile. For the case with
daily temperature fluctuations the temperatures will be modeled using the truncated
Fourier series

T(t) = T0− T1 cos(2π t)− T365cos(730π t).

In this seriesT0 represents the mean annual temperature,T1 is the amplitude of the
seasonal fluctuation between summer and winter average temperatures, andT365 is
average amplitude of oscillation between daily highs and lows. We setT365 = 0
for simulations which have only seasonal temperature fluctuations. Equations (1)
were integrated using the trapezoid rule in MATLAB with arbitrarily chosen initial
conditions,t0, for at least 100 generations of developmental time, and the emer-
gence date for the median individual for each year was recorded. This sequence of
median ovipositional dates were examined for seasonality. Seasonality is achieved
if after a ‘few’ years, the emergence date remains the same for all following years.

For each choice ofT0, T1 the number of generations per year at the end of the
simulation was also recorded. A contour plot of the voltinism for seasonal fluc-
tuations only (T365 = 0) is presented in Fig.9. The white areas are regions of
stable voltinism. The black and white marbled areas are regions of fractional or
asynchronous voltinism. Such voltinism occurs if stable orbits do not exist or if
for such a stable orbit the number of generations per yearor number of years per
generation is not a whole number, e.g., 1.7 generations per year. Thus one gen-
eration every 2 years (semi-voltinism) is not asynchronous, but three generations
every 2 years would be. Though MPB generally live in temperate environments,
they require an adequate amount of thermal energy for development. Figure9
illustrates this; if the mean annual temperature (T0) is high, then only small sea-
sonal fluctuations are required to achieve univoltine life cycles. However, if the
mean annual temperature is low, then large seasonal temperature fluctuations are
required to acquire enough thermal energy for development through all seven life
stages. Figure7 shows the temperature region predicted by equation (14) to sup-
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Figure 9. Combinations of mean annual temperature,T0, and seasonal fluctuation in de-
grees centigrade,T1, for which the model using linear approximations to developmental
rate curves predictsk-voltine life cycles. The white areas are regions of stable voltin-
ism. The black and white marbled areas are regions of asynchronous fractional voltinism.
Wherek = 1, univoltinism (one generation per year) is supported. The regions of tempera-
ture wherek = 2 support two generations per year for MPB. A narrow band of semi-voltine
solutions exist(k = 1

2) for cooler temperatures, but is not labelled.

port univoline life cycles. Some of this predicted region coincides with predicted
regions for univoltinism from the simulations (shown in Fig.9).

Figure10 depicts the regions of voltinism when daily fluctuations are included
(T365 6= 0). In this caseT0 = 3 ◦C. Daily fluctuations reduce the size of seasonal
fluctuations required for successful synchrony. This occurs because beetles acquire
more energy on some days due to daily temperature fluctuations. The lower bound
for T1 is decreased, generating a larger set of temperatures which create stable
univoltine life cycles, increasing the success of MPB.

In Figure9 the bands of stable voltinism are separated by regions of asynchronous
fractional voltinism. It has been hypothesized (Logan and Bentz, 1999) that an
increase in mean annual temperature from inside to outside the regions of voltin-
ism destabilizes life cycles before the temperature reaches another region of stable
integer voltinism. This would lead to a disruption in synchrony, limiting MPB
distribution. For organisms with many life stages, development may be approxi-
mated by linear rate curves (Powellet al., 2000), however,Loganet al. (1976) (and
others before) provide evidence that arthropods have nonlinear developmental rate
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Figure 10. Voltinism generated by combinations of seasonal temperature fluctuations,T1,
and daily temperature fluctuations,T365, when the mean annual temperature,T0 = 3 ◦C
degrees centigrade. Thek-voltine cycles are predicted using linear approximations to de-
velopmental rate curves. The white areas are regions of stable voltinism. The black and
white marbled areas are regions of asynchronous fractional voltinism. Note the broadened
band of semi-voltine solutions (k = 1

2).

curves. Table2 shows the functional forms for developmental rate curves depicted
in Fig. 8, followed by parameter values for the nonlinear rate curves in Table3.
As a test of the predicted structural stability of our results we repeat the previous
numerical experiments using nonlinear rate curves for MPB.

Figure11shows that the nonlinear developmental rate functions decrease the size
of temperature regions for which integer voltinism is achieved as compared with
the linear curves in Fig.9. Regions of asynchronous fractional voltinism separat-
ing regions of stable voltinism are not removed. Contrary to the model outcome
using linear developmental rate curves, when daily fluctuations are added to the
model with nonlinear developmental rate curves, the regions of stable voltinism
are decreased (see Fig.12). This is due to the modal nonlinear developmental
rate curves (see Fig.8). At moderate temperatures the linear model overestimates
the amount of development occurring in the first four life stages. The linear rate
curves increase as temperature increases, whereas the nonlinear rate curves have
a peak in the 20’s and then decrease as temperature continues to rise. In the 20’s,
however, the nonlinear rate curves are underestimated by the linear approxima-
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Table 2. Functional forms for nonlinear development (Logan, 1988) for mountain pine
beetles. The functional form for each of the life stages is used if the development is posi-
tive, otherwise the rate is set to zero. Thresholds are implemented in the third larval stage
and the ovipositional adult stage by the additional requirement that the temperature must
be above the developmental threshold,p5, or else rates are set to zero.

Developmental stage Functional forms forT > 0

Egg p1

[
1

1+p2 exp(−p3(T−5)) − exp
(
−p4+T+5

p5

)]
First larval instar p1

[
1

1+p2 exp{−p3(T−5)} − exp
(
−p4+T+5

p5

)]
Second larval instar p1

[
1

1+p2 exp{−p3(T−10)} − exp
(
−p4+T+5

p5

)]
Third larval instar p1

[(
1+

(
p4

T−p5

)2)−1
− exp

(
T−p2−p5

p3

)]
Fourth larval instar p1(T − p2)

Pupae p1(T − p2)

Ovipositional adult 2.54 p1

[
exp

(
p2(T − p5)

p3
)
− exp

(
p5−T

p4

)]

Table 3. Parameters for nonlinear rates of development for mountain pine beetle.

Developmental stage p1 p2 p3 p4 p5

Egg 114.9020 19.9353 0.2034 29.6029 4.8851
First larval instar 251.3755 57.2790 0.3004 25.2244 4.5963
Second larval instar 130.0130 18.0117 0.4788 19.3602 3.4696
Third larval instar 69.6785 19.7005 0.1542 8.7683 7.9046
Fourth larval instar 3.6500 10.9543
Pupae 6.2780 11.7555
Ovipositional adult 61.6850 0.0194 1.5400 0.8000 2.0000

tion. Consequently bands of tri-voltine solutions are depicted in Fig.11, which
do not appear in the corresponding figure for linear rate curves (Fig.9). For very
high temperatures in the linear model, beetles age rapidly, while in the nonlinear
model beetles do not develop as much (past the mode optimal development tem-
peratures). Thus, for very high temperatures the linear model predicts regions of
high voltinism, which are never observed. However, this is far from the regime in
which the linear model can be expected to be any kind of approximation to reality.
For our purposes, the overall structural correspondence between the linear model
predictions and the nonlinear phenology simulations is very good, as predicted by
structural stability.
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Figure 11. Voltinism generated by combinations of mean annual temperature,T0, and
seasonal temperature fluctuations,T1, using nonlinear development rate curves. Predicted
k-voltine life cycles (in white) are separated by black and white marbled regions of asyn-
chronous fractional voltinism. There are temperatures for which uni-(k = 1), bi-(k = 2),
and tri-(k = 3)voltine life cycles are supported. A narrow band of semi-voltine (k = 1

2)
solutions exists for low temperatures, but is not labelled.

5. CONCLUSIONS

Seasonal timing and synchrony are vital to the survival and reproduction of MPB.
We see that yearly temperature variations alone are enough to create conditions for
univoltine life cycles, promoting an adaptive seasonality. Furthermore, periods
in the life cycle during which an insect is in a quiescent state enhance integer
voltinism. As seen in the simulations, bivoltine (and multivoltine) life cycles are
also possible when enough thermal energy exists in the system, i.e., high mean
annual temperature with large seasonal fluctuations. For organisms with one high
developmental threshold these cyclic solutions are structurally stable, and therefore
likely to be observed.

In this paper we have shown that univoltine solutions exist for reasonable temper-
ature regimes as suggested byLogan and Bentz(1999). There are, however, many
possible fixed points for the system, not all of which are univoltine. As seen in
simulations, suitable conditions for univoltinism are fairly restricted. Some mod-
ification in the temperature, two degrees in either mean or seasonal temperatures
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Figure 12. Voltinism generated by combinations of seasonal temperature fluctuations,T1,
and daily temperature fluctuations,T365, when the mean annual temperature isT0 = 3 ◦C.
Nonlinear rate curves generatek-voltine cycles (white), separated by marbled regions of
asynchronous fractional voltinism. The white band to the far right of the figure is a band
of bi-voltine solutions. Note the broadened band of semi-voltine solutions (k = 1

2) which
exists for lower temperatures.

(such as could occur from global warming) may alter or destroy the current voltin-
ism that allows MPB to be successful, thrusting MPB into regimes of asynchronous
fractional voltinism. Conversely, the same warming could make new regions ac-
cessible to MPB (e.g., Jack pines in Canada) which are currently protected by the
thermal prohibition of asynchronous or fractional voltinism. This model could be
used to determine what habitats, based on temperature, MPB may inhabit. In addi-
tion, due to the generality of the mechanisms we consider, these sorts of predictions
may be applicable to other temperate insects without diapause, enhancing general
understanding of insects under direct temperature control.
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